This paper aims to determine the factors that influence the participation of the Sub-Saharan Africa countries in the global value chain (GVC). The paper use of a spatial panel Model to show that the variability of participation in the global value chain is explained by the total factor productivity, the dollar rate, the terms of trade, the type of economic zone and the degree of integration of countries into the Global Economy (Globalization). Empirical evidence displays a positive link between the total factor productivity growth and the participation in the global value chain. The rise of the Dollar against the Euro strengthens the participation in the global value chain. The deterioration of the terms of trade decreases participation in the global value chain. Special Economic Zones have a positive effect on the global value chain. On the other hand, a significant negative relationship between the free trade zones and participation in the GVC is observed. Finally, with the exception of the Economic Globalization Index and Political Index, all the other indexes have a positive and significant impact on participation in the GVC. The Sub-Saharan African countries have an interest in becoming more integrated into the globalization of trade, information technology and finance. They must also promote economic and political integration.
Published in | Journal of Finance and Accounting (Volume 12, Issue 3) |
DOI | 10.11648/j.jfa.20241203.11 |
Page(s) | 58-66 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Global Value Chain, Spatial Panel, Special Economic Zone, Globalization
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
EGI | Economic Globalization Index |
EPAs | Economic Partnership Agreements |
FTAs | Free Trade Zones |
GIP | Political Globalization Index |
GVC | Global Value Chain |
ICIO | Inter-Country Input-output |
OECD-TIVA | OECD’s Trade in Value Added Database (TiVA) |
OECD | Organization for Economic Co-operation and Development |
OLS | Ordinary Least Squares |
SAC | Spatial Autoregressive Combined Model |
SAR | spatial Autoregressive |
SDM | Spatial Durbin model |
SEM | Spatial Error Model |
SEZ | Special Economic Zone |
SSA | Sub-Saharan African |
TPF | Total Factor Productivity |
WIOD | World Input-Output Database |
WTO | World Trade Organization |
Variables | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
gexp | 25742 | 125,74 | 941,808 | 0,002 | 23061,060 |
dc | 1775 | 107,47 | 815,461 | -183,800 | 21938,570 |
dva | 1775 | 107,43 | 815,042 | -183,793 | 21937,710 |
vax | 1775 | 107,26 | 813,409 | -183,761 | 21914,580 |
ref | 1775 | 0,17 | 2,014 | -0,038 | 67,038 |
ddc | 1775 | 0,05 | 0,597 | -0,587 | 22,598 |
fc | 1775 | 18,27 | 146,791 | -1,079 | 4484,197 |
fva | 1775 | 18,26 | 146,669 | -1,079 | 4481,509 |
fdc | 1775 | 0,01 | 0,134 | -0,111 | 5,833 |
gvc | 1775 | 49,60 | 426,293 | -0,551 | 12490,320 |
gvcb | 1775 | 18,31 | 147,341 | -1,079 | 4496,438 |
gvcf | 1775 | 31,29 | 295,354 | -51,182 | 8654,460 |
Ecog | 1775 | 51,07 | 18,52 | 4,32 | 98,63 |
Tradeg | 1775 | 50,46 | 20,18 | 3,96 | 99,55 |
Fing | 1775 | 51,75 | 21,66 | 3,07 | 100,00 |
Politg | 1775 | 47,29 | 26,37 | 1,00 | 98,34 |
epz | 1775 | 0,408 | 0,492 | 0 | 1 |
empz | 1775 | 0,127 | 0,333 | 0 | 1 |
sez | 1775 | 0,155 | 0,362 | 0 | 1 |
ctfp | 1775 | 0,644 | 0,251 | 0,099 | 1,732 |
rtfpna | 1775 | 1,008 | 0,192 | 0,424 | 2,200 |
pwt_xr | 1775 | 286,073 | 1075,392 | 0,000 | 11865,210 |
EXCH_TERM | 1775 | 1,018 | 0,098 | 0,586 | 1,313 |
Sectors | vax | dc | fc | dva | fva | gvc | gvcb | gvcf |
---|---|---|---|---|---|---|---|---|
Agriculture | 90,76 | 90,80 | 9,20 | 90,80 | 9,20 | 35,47 | 9,20 | 26,27 |
Construction | 73,50 | 73,52 | 26,48 | 73,51 | 26,48 | 42,62 | 26,49 | 16,14 |
Education, Health and Other Services | 86,12 | 86,14 | 13,86 | 86,13 | 13,86 | 28,68 | 13,87 | 14,82 |
Electronics and Machinery | 60,60 | 60,64 | 39,36 | 60,63 | 39,36 | 52,71 | 39,37 | 13,35 |
Financial and Corporate Intermediation | 84,53 | 84,55 | 15,45 | 84,55 | 15,45 | 38,81 | 15,45 | 23,36 |
Fishing | 68,38 | 68,41 | 31,59 | 68,41 | 31,59 | 48,25 | 31,59 | 16,65 |
Food and Beverages | 76,62 | 76,65 | 23,35 | 76,65 | 23,35 | 37,79 | 23,35 | 14,43 |
Hotels and Restaurants | 86,35 | 86,37 | 13,63 | 86,36 | 13,63 | 31,15 | 13,64 | 17,51 |
Maintenance and Repair | 76,30 | 76,32 | 23,68 | 76,31 | 23,68 | 45,10 | 23,69 | 21,41 |
Metal Products | 67,65 | 67,70 | 32,30 | 67,70 | 32,29 | 55,34 | 32,30 | 23,04 |
Mining and Quarrying | 84,74 | 84,80 | 15,20 | 84,80 | 15,20 | 45,51 | 15,20 | 30,30 |
Other products Manufacturer | 67,42 | 67,44 | 32,56 | 67,43 | 32,56 | 45,48 | 32,57 | 12,91 |
Oil, Chime and Non-Metallic Minerals | 58,83 | 58,87 | 41,13 | 58,87 | 41,12 | 55,46 | 41,13 | 14,33 |
Post and Telecommunications | 87,63 | 87,65 | 12,35 | 87,65 | 12,35 | 34,44 | 12,35 | 22,09 |
Private Households | 72,09 | 72,11 | 27,89 | 72,11 | 27,89 | 47,38 | 27,89 | 19,49 |
Public Administration | 78,92 | 78,94 | 21,06 | 78,94 | 21,06 | 39,80 | 21,06 | 18,74 |
Re-export & Re-import | 19,49 | 19,51 | 80,49 | 19,50 | 80,48 | 86,10 | 80,50 | 5,59 |
Retail Trade | 88,97 | 88,99 | 11,01 | 88,98 | 11,01 | 33,09 | 11,02 | 22,08 |
Textiles and Wearing Apparel | 71,30 | 71,32 | 28,68 | 71,32 | 28,68 | 44,80 | 28,68 | 16,12 |
Transport | 82,67 | 82,70 | 17,30 | 82,70 | 17,30 | 37,95 | 17,30 | 20,65 |
Transport Equipment | 55,17 | 55,20 | 44,80 | 55,19 | 44,80 | 55,97 | 44,81 | 11,16 |
Wholesale Trade | 85,52 | 85,54 | 14,46 | 85,54 | 14,46 | 45,64 | 14,46 | 31,19 |
Wood and Paper | 68,79 | 68,85 | 31,15 | 68,84 | 31,15 | 50,01 | 31,16 | 18,85 |
Average | 73,58 | 73,61 | 26,39 | 73,61 | 26,39 | 45,11 | 26,39 | 18,72 |
Variables | OLS | BAG | SAR | SDM | SEM |
---|---|---|---|---|---|
PTF | 0.339* | 0.685*** | 0.734*** | 0.676*** | 0.633*** |
(0.182) | (0.0750) | (0.0747) | (0.0754) | (0.0763) | |
TCER | 0.00123*** | 0/00313** | 0.00297* | 0.002.98* | 0.00328** |
(3.09e-05) | (1.51e-05) | (1.55e-05) | (1.55e-05) | (1.53e-05) | |
TE | -6.152*** | -0.423*** | -0.189*** | -0.110*** | -0.185*** |
(0.358) | (0.014) | (0.014) | (0.015) | (0.015) | |
EPZ | -0.699*** | -1.163** | -1.042** | -1.846*** | |
(0.0840) | (0.527) | (0.522) | (0.595) | ||
ZFEM | -0.360*** | -0.823*** | -0.786*** | -1.184*** | |
(0.114) | (0.074) | (0.073) | (0.084) | ||
SEZ | 0.490*** | 1.205* | 1.176* | 1.582** | |
(0.110) | (0.680) | (0.671) | (0.765) | ||
IMECO | 12.62** | -8.143*** | -7.915*** | -7.604*** | -8.341*** |
(5.168) | (2.819) | (2.884) | (2.878) | (2.864) | |
IMCOM | -6.060** | 4.121*** | 4.002*** | 3.852*** | 4.221*** |
(2.579) | (1.409) | (1.441) | (1.438) | (1.431) | |
IMFIN | -6.398** | 4.206*** | 4.101*** | 3.950*** | 4.289*** |
(2.590) | (1.410) | (1.443) | (1.440) | (1.433) | |
IMINFOR | 0.414*** | 0.137*** | 0.120*** | 0.129*** | 0.178*** |
(0.0290) | (0.0159) | (0.0130) | (0.0136) | (0.0177) | |
IMPOL | 0.963*** | -0.0591*** | -0.0542*** | -0.0522*** | -0.0479** |
(0.0219) | (0.0178) | (0.0175) | (0.0176) | (0.0193) | |
Rho | 0.791*** | 0.812*** | 0.810*** | ||
Phi | (0.0224) | (0.0170) | (0.0181) | ||
Lambda | 0.234** | 0.954*** | |||
(0.0973) | (0.00707) | ||||
lgt_theta | -3.475*** | -3.468*** | |||
(0.0889) | (0.0889) | ||||
ln_phi | 4.016*** | ||||
(0.173) | |||||
sigma_mu | 1.2166 | ||||
sigma2_e | 0.0889*** | 0.0891*** | 0.0881*** | 0.0902*** | |
(0.00288) | (0.00307) | (0.00303) | (0.00312) | ||
Constant | 5.071*** | 0.291 | -0.953* | 7.600*** | |
(0.375) | (0.391) | (0.534) | (0.485) | ||
Comments | 1232 | 1232 | 1232 | 1232 | 1232 |
R2 | 0.785 | 0.392 | 0.466 | 0.484 | 0.385 |
LL | -3067.102 | -371.874 | -659.864 | -649.327 | -714.802 |
AIC | 6158.204 | 765.749 | 1349.729 | 1334.654 | 1459.605 |
BIC | 6223.983 | 826.046 | 1431.95 | 1433.322 | 1541.829 |
[1] | Bair J. (2005). Analyzing Economic Organization: Embedded Networks and Global Chains. Economy and Society, Vol. 37, no. 3, pp. 339-364. |
[2] | Baltagi B. H, Seuck S. H. and Koh W. (2003). "Testing panel data regression models with spatial error correlation. Journal of econometrics 117.1, pp. 123-150. |
[3] | Baltagi, B. H., Egger P. and Pfaffermayr M. (2013). A Generalized Spatial Panel Data Model with Random Effects. Econometric Reviews 32.5, pp. 650-685. |
[4] | Davies R. and François J. (2015). Special Tax Treatment as Trade Policy: A Database on Export Processing and Special Economic Zones. PRONTO. RePEc: wti: papers: 872. |
[5] | Elhorst J. Paul (2010) Applied Spatial Econometrics: Raising the Bar. Spatial Economic Analysis, 5(1), 9-28. |
[6] | Belotti, F., Borin, A., & Mancini, M. (2020). icio: Economic analysis with inter-country input-output tables in Stata. World Bank Policy Research Working Paper, (9156). RePEc: wbk: wbrwps: 9156. |
[7] | Gebrewolde, T. M., Koelle, M., Krishnan, P., & Mengistu, A. T. (2019). Productivity, shocks, and management practices. International Growth Centre. RePEc: fip: fedkpr: y: 2006: p: 59-102. |
[8] | Grossman, G. M., & Rossi-Hansberg, E. (2006). The rise of offshoring: it’s not wine for cloth anymore. The new economic geography: effects and policy implications, 2006. RePEc: fip: fedkpr: y: 2006: p: 59-102. |
[9] | Hopkins T. and Wallerstein I. (1977). Patterns of Development of the Modern World-System. Review, vol. 1 No. 2, pp. 11-145. |
[10] | Lee, Lung-fei and Jihai Yu (2010a). "A spatial dynamic panel data model with both time and individual fixed effects". Econometric Theory 26.2, pp. 564-597. |
[11] | Lee, Lung-fei and Jihai Yu (2010b). "Some recent developments in spatial panel data models". |
[12] | Lenzen, M., Moran, D., Kanemoto, K., Geschke, A. 2013. 'Building Eora: A Global Multi- regional Input-Output Database at High Country and Sector Resolution.' Economic Systems Research, 25: 1, 20-49. |
[13] | Mult, Jan and Michael Pfaffermayr (2011). "The Hausman test in a Cliff and Ord panel model". The Econometrics Journal 14.1, pp. 48-76. |
[14] | Pesaran, M. H., & Tosetti, E. (2011). Large panels with common factors and spatial correlation. Journal of Econometrics, 161(2), 182-202. RePEc: eee: econom: v: 161: y: 2011: i: 2: p: 182-202. |
[15] | Timmer M. P., Erumban A. A., Los B., Stehrer R., Gaaitzen J. de Vries (2014), "Slicing Up Global Value Chains", Journal of Economic Perspectives, vol. 28(2). |
[16] | UNIDO (2009). Value Chain Diagnostics for Industrial Development. Building blocks for a holistic and rapid analytical tool. UNIDO Working Paper. |
[17] | World Development Report (WDR) (2020). Trade for Development in an Era of Globalized Value Chains, World Bank. |
APA Style
Gueyea, A., Diopb, A. N., Ndiayec, M. B. O. (2024). The Quest for Participating to Global Value Chain in Sub-Sahara Africa: An Analysis of Determining Factors Using a Spatial Panel Model. Journal of Finance and Accounting, 12(3), 58-66. https://doi.org/10.11648/j.jfa.20241203.11
ACS Style
Gueyea, A.; Diopb, A. N.; Ndiayec, M. B. O. The Quest for Participating to Global Value Chain in Sub-Sahara Africa: An Analysis of Determining Factors Using a Spatial Panel Model. J. Finance Account. 2024, 12(3), 58-66. doi: 10.11648/j.jfa.20241203.11
AMA Style
Gueyea A, Diopb AN, Ndiayec MBO. The Quest for Participating to Global Value Chain in Sub-Sahara Africa: An Analysis of Determining Factors Using a Spatial Panel Model. J Finance Account. 2024;12(3):58-66. doi: 10.11648/j.jfa.20241203.11
@article{10.11648/j.jfa.20241203.11, author = {Adama Gueyea and Allé Nar Diopb and Mohamed Ben Omar Ndiayec}, title = {The Quest for Participating to Global Value Chain in Sub-Sahara Africa: An Analysis of Determining Factors Using a Spatial Panel Model }, journal = {Journal of Finance and Accounting}, volume = {12}, number = {3}, pages = {58-66}, doi = {10.11648/j.jfa.20241203.11}, url = {https://doi.org/10.11648/j.jfa.20241203.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jfa.20241203.11}, abstract = {This paper aims to determine the factors that influence the participation of the Sub-Saharan Africa countries in the global value chain (GVC). The paper use of a spatial panel Model to show that the variability of participation in the global value chain is explained by the total factor productivity, the dollar rate, the terms of trade, the type of economic zone and the degree of integration of countries into the Global Economy (Globalization). Empirical evidence displays a positive link between the total factor productivity growth and the participation in the global value chain. The rise of the Dollar against the Euro strengthens the participation in the global value chain. The deterioration of the terms of trade decreases participation in the global value chain. Special Economic Zones have a positive effect on the global value chain. On the other hand, a significant negative relationship between the free trade zones and participation in the GVC is observed. Finally, with the exception of the Economic Globalization Index and Political Index, all the other indexes have a positive and significant impact on participation in the GVC. The Sub-Saharan African countries have an interest in becoming more integrated into the globalization of trade, information technology and finance. They must also promote economic and political integration. }, year = {2024} }
TY - JOUR T1 - The Quest for Participating to Global Value Chain in Sub-Sahara Africa: An Analysis of Determining Factors Using a Spatial Panel Model AU - Adama Gueyea AU - Allé Nar Diopb AU - Mohamed Ben Omar Ndiayec Y1 - 2024/07/23 PY - 2024 N1 - https://doi.org/10.11648/j.jfa.20241203.11 DO - 10.11648/j.jfa.20241203.11 T2 - Journal of Finance and Accounting JF - Journal of Finance and Accounting JO - Journal of Finance and Accounting SP - 58 EP - 66 PB - Science Publishing Group SN - 2330-7323 UR - https://doi.org/10.11648/j.jfa.20241203.11 AB - This paper aims to determine the factors that influence the participation of the Sub-Saharan Africa countries in the global value chain (GVC). The paper use of a spatial panel Model to show that the variability of participation in the global value chain is explained by the total factor productivity, the dollar rate, the terms of trade, the type of economic zone and the degree of integration of countries into the Global Economy (Globalization). Empirical evidence displays a positive link between the total factor productivity growth and the participation in the global value chain. The rise of the Dollar against the Euro strengthens the participation in the global value chain. The deterioration of the terms of trade decreases participation in the global value chain. Special Economic Zones have a positive effect on the global value chain. On the other hand, a significant negative relationship between the free trade zones and participation in the GVC is observed. Finally, with the exception of the Economic Globalization Index and Political Index, all the other indexes have a positive and significant impact on participation in the GVC. The Sub-Saharan African countries have an interest in becoming more integrated into the globalization of trade, information technology and finance. They must also promote economic and political integration. VL - 12 IS - 3 ER -